$$ \text{sin α=}\frac{\mathrm a}{\mathrm c}\left(\mathrm{inaczej}\;\sin\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kata}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right)$$
$$ \text{cos α=}\frac{\mathrm b}{\mathrm c}\left(\mathrm{inaczej}\;\cos\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right) $$
$$ \text{tg α=}\frac{\mathrm a}{\mathrm b}\left(\mathrm{inaczej}\;tg\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna }\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kąta}\;\mathrm\alpha}{\mathrm{przyprostokątna}\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}\right) $$
$$ \text{ctg α=}\frac{\mathrm b}{\mathrm a}\left(\mathrm{inaczej}\;ctg\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna }\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}{\mathrm{przyprostokątna}\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kąta}\;\mathrm\alpha}\right) $$
Nie przywiązuj się do literek – zapamiętaj gdzie leżą poszukiwane wartości bo oznaczenia mogą się zmienić.
Zadanie: Kąt α jest ostry i sinα = 7/13. Wówczas tgα jest równy:
$$ \textrm{A. } \frac76 \textrm{, B. } \frac{7×13}{120} \textrm{, C. } \frac{7}{\sqrt{120}} \textrm{, D. }\frac{7}{13\sqrt{120}} $$
$$ \text{sin α=}\frac{\mathrm a}{\mathrm c}\left(\mathrm{inaczej}\;\sin\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kata}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right)$$
, więc przyprostokątna leżąca naprzeciw kąta może być równa 7, a przeciwprostokątna może być równa 13 (lub dowolnej wielokrotności tych liczb ale dla tego zadania to nie jest istotne). Brakuje nam wartości przyprostokątnej leżącej przy kącie i to obliczymy sobie z twierdzenia Pitagorasa:
72+b2 = 132
b2 = 132 – 72
b2= 169-49
b2 = 120
b=√120
Mamy już wszystkie wartości boków: a=7, b=√120, c=13.
Wystarczy podstawić do wzoru:
$$ \text{tg α=}\frac{\mathrm a}{\mathrm b}\left(\mathrm{inaczej}\;tg\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna }\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kąta}\;\mathrm\alpha}{\mathrm{przyprostokątna}\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}\right) $$
$$ \textrm{tg} \alpha=\frac ab=\frac{7}{\sqrt{120}} $$
Prawidłową odpowiedzią jest zatem odpowiedź C
$$ tg\alpha = \frac{7}{\sqrt{120}} $$
To już koniec zadania. Zadanie to pojawiło się na egzaminie maturalnym w roku 2012 (poziom podstawowy)