$$ \text{sin α=}\frac{\mathrm a}{\mathrm c}\left(\mathrm{inaczej}\;\sin\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kata}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right)$$
$$ \text{cos α=}\frac{\mathrm b}{\mathrm c}\left(\mathrm{inaczej}\;\cos\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right) $$
$$ \text{tg α=}\frac{\mathrm a}{\mathrm b}\left(\mathrm{inaczej}\;tg\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna }\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kąta}\;\mathrm\alpha}{\mathrm{przyprostokątna}\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}\right) $$
$$ \text{ctg α=}\frac{\mathrm b}{\mathrm a}\left(\mathrm{inaczej}\;ctg\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna }\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}{\mathrm{przyprostokątna}\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kąta}\;\mathrm\alpha}\right) $$
Nie przywiązuj się do literek – zapamiętaj gdzie leżą poszukiwane wartości bo oznaczenia mogą się zmienić.
Zadanie: W trójkącie prostokątnym dane są długości boków (zobacz rysunek). Wtedy:
$$ \textrm{A. cos }\alpha = \frac9{11} \textrm{, B. sin }\alpha = \frac 9{11} \textrm{, C. sin } \alpha = \frac{11}{2\sqrt{10}} \textrm{, D.cos }\alpha = \frac{2\sqrt{10}}{11} $$
Mamy wartości boków ale musimy je właściwie oznaczyć.
Jeżeli w zadaniu nie podano inaczej bok a leży na przeciwko kąta α. W naszym przypadku będzie to bok o długości 2√10.
Pozostałe boki to b=9 i c = 11
Podstawiamy te wartości do wzorów:
$$ \text{sin α=}\frac{\mathrm a}{\mathrm c}\left(\mathrm{inaczej}\;\sin\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{na}\;\mathrm{przeciw}\;\mathrm{kata}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right)$$
$$ \text{cos α=}\frac{\mathrm b}{\mathrm c}\left(\mathrm{inaczej}\;\cos\;\mathrm\alpha\;=\frac{\mathrm{przyprostokątna}\;\mathrm{przy}\;\mathrm{kącie}\;\mathrm\alpha}{\mathrm{przeciwprostokątna}}\right) $$
Prawidłową odpowiedzią jest zatem odpowiedź A
$$ cos\alpha = \frac9{11} $$
To już koniec zadania. Zadanie to pojawiło się na egzaminie maturalnym w roku 2012 (poziom podstawowy)